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-‘CNMRspectrsforrvsrietyofaMd~4nomericKrksof r+msnwpynnosides sad L&m- 
aopynaosiderue~~md~ycsdincompuiroawith~ofpducopynaorides.nKreru~obtrhredin 
the present shnty sre vshmbk for the rtnrtlnr studia of ptxoGglycoside9 u weIi 8s carbohydratea. e~pecinlly for 
detamin&o of ammeric co&uratiotu of mumoklu xnd rbammmiicr which has beeo extremely di6cuh by 
other clmuii techoiques. 

THJ! application of “C NMR spectroscopy to plant- 
glyc43sidcs have been investigatc!d rccently’~ via carbon 
resonance displacements of both sugar and aglycone 
moieties on glucoside-formation (glucosylation shift). 
Nevertheless, there have been few systematic studies on 
“C NIUR spectra of mannosides .(C-2’ epimers of cor- 
responding glucosidcs) and rhamnosides, mainly because 
of the di5cuIties encountered during the preparation of 
fi-anomeric series of mannosidcs and rhamnosidu. We 
pnparcd some of fl-pmannopyraaosides and publi&d 
a preliminary report of their “C NMR spcctn’ In order 
to obtain more information about the intfuences of C-2’ 
co&vation of sugar residue on this glycosyls&on shift, 
we prepared a- and @nomcric pairs of D4nan- 
nopyranosides and L-rhamnapyranosides and the present 
paper reports the D+nannosylation and L-rhamnosylation 
shifts in comparison with the Dglucosylation shift. 

Afatai&. Otycosider of MeOH (1). i.e. methyl o- sad fl+ 
gllEosidn. mctbyl a +lnanmuidc aad metbyi a-Wi 
were commacay Wxilebk. U-LkM of pmpyl akQbol 
(21. iropropyl akdd oh mM+ r-butYkydobcuaol 0. I- 
menthol ((-MI. d-menthol ((+ )4), r&OH Q. kcbokstsn- 
3jkd (7) and dammar-24-en-3/3~R)diodiol (r, 3Oaawdide) 
aad @-mammeidea of IJ were prrpued rcordiry to tbc 
procedure ue4J for the sFthesir of PmumopynooryM&mec- 
chukkbylkbudtrtol. 

RhmnoridcrofUwereryntksiibycoodearrtioaof 
cr.agA withaa@yconeakoholinMeCNwith 
Hg(m followed by m of acetyl goup.’ 

Garml pn7ccdnre. The ryatbesis of /I-L--ides is Dot 
well documeoted iu the litm&re. ‘Ibt present autborz papered 
/MAummmides of 1-7 by condenutioa of +(kubaetboxy-2.5 
crcuboayhPL_rhrmaosyl bfoal& (9) with sa sglywas skdlol 
in ma, with A&o 8s the condc~ rpnt fouowed by dear- 
bonylatilm sod dearboeIboxyhtkm. I&aioo of cxceas akobol 
with9illMecNintheprcKnceofHg(crQJahoyieldednuinty 
/3-L~ktes. while cO&nssrioa of all cquilmhlt Moullt of 
an akobol with 9 u&r Gklar condition yielded tbc a-momcr. 
Tk same reauh was observed in tbz synthercs of r+mumoaido 
q eotioned above. 

(I- and 8-IAhuWaiin of p-aitropheool (14 were prepared 
byrmodifk&moftheprocedureauscdfortberyntbcsesofthc 
currelpondig a-‘ u&d jM-aMosidel.’ 

~+CihtcAier of 2-8 were prepared by the uwl Koenigs- 
Knorr method. a-~Glucoaidea of 2-4 were ryotbesii by ao- 
densatkm of an aglycooe nlwhol with 3,4,btiolcaycB-D. 

=?I chbride with Hg(O& in MeCN followed by dmcetyi- 

The experimental details of these SyntbeKS will be reported 
&?Wkn. 

NMR rpecrml meuaremat~. Spectra were taken on JEOL 
JNM-PIT&I NMR spccbometa at 25’ in C&N with the 
maceatntioe 0.0620 q It 2.5. I3 MHz for ‘C xod 100 MHz for 
‘H. PMoAec~upkd FT measun?wat Spectrsl width: 4 KHz, 
p&e M ao&: 90’, ac&Son time: 0.4 sec. number of dab 
p&t% 40%. tnkeot time: I-2sec. number of transient: 
7OMOOO. Gmditio~~ of ‘JC_,, maaureroent by geted deaplii 
spcctnl width: 4 KHz, pulse Eppii aegk: !W. acquisition time: 
0.4 sec. number of deta poiota: 4096, tnnrient time: l-2 sec. 
number of banaieot: 2ooMoooo. computer limited resolution: 
2Hz” 

RmalLTsAND- 

The glycosylation shifts are discussed in comparison 
with the results for D-glucosides.’ 

G!ycosy&lion sAtfrs of sugar moieties (Table I). The 
assignment of ~~~opyranosyl and L-rham- 
nopyranosyl carbon resonances were referred to the 
reported data for a- and @-~mannoses and -L-rham- 
noses, methyl a-pmannoside and methyl a-L&am- 
noside in M.9 It has been reported that in spectra of 
@@cosides other than those of some of the hindered 
alcohols such as (- l-5 (aide infm), carbon signals of C-l’ 
(anomerk carbon), - 2’. - 3’ and - 5’ appear at rcmark- 
ably lower field than those of the corresponding a- 
anom~rs.~ In contrast, only slight dilferences in the car- 
bon chemical shifts of C-l’ and - 2’ were found between 
q- and B-anonurs of Dmannosides and L-rhamnosides 
except for tbosc of (+)- and (-H (oidc infrr). while 
significant downtleld shifts of C-3’ and -S’ signals from 
tbc Banomen to the corresponding u-anomers-were still 
ObSClVCd. 

With regard to UK influence of structures of aglyconc 
alcohols on the glycosylation shifts, C-l’ signals of each 
aoomeric series are generally deshiilded in the decreas- 
ing order of methyl, primary, secondary (unhindered) 
and tertiary alcoholic pmannosides and L-rhamnosides 
as ab’eady found in the series of Dglucosides,” while 
C-l’ signals of a- and /WAamnosides of 10 appear at 
similar positions to those of the unhindered secondary 
alcohols. sugar carbon signals other than C-l’ were 
found to be only sliitly atktal by the structure change 
of algyconcs, indicating that the glycosides of each 
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CH30H HO- "04 HO-(- 
I 2 3 8 

T&le 2. “C chemical shifts wl glycoaylatioa shifts (Ad in ppm. in pareotbescs)c of aglyconc moicth (I). 

a-D-916 B-a_QlcC a-DunC 8_0-mnc a-L-rtmc B-L-r@ 
b o-c (““a-c) box (%c) C-c @‘,.c) 4-c cba,,) P-c (‘Q) 6=-C C~a_C) 

j, 54.9 (ti.5) 56.7 (t7.3) 54.4 (t5.0) 56.5 (+7.1) 54.4 (t5.0) 56.4 (t7.0) 

2, 69.6 (t5.7) 71.2 (t7.3) 69.9 (t5.0) 71.0 (t7.1) 69.0 (t6.1) 70.9 (t7.0) 

!. 69.7 (t6.3) 71.4 (t7.6) 66.5 (t5.1) 70.2 (t6.8) 68.6 (t5.2) 70.3 (t6.9) 

t 76.9 (t6.6) 77.7 (t7.4) 75.7 (t5.4) 77.1 (t6.8) 75.6 (t5.3) 77.2 (46.9) 

s, 74.7 (t6.9) 75.3 (t7.5) 74.5 (6.7) 75.3 (t7.5) 74.2 (t6.4) 75.0 (t7.2) 

! 77.2 (6.7) 75.9 (t5.4) 76.9 (t6.4) 75.7 (t5.2) 77.3 (t6.8) 

10 162.0 (-3.4) 162.9 (-2.5) 

‘A8 : 8 (glycosidc) - d h&x=). 
%gk. c-rmi~ ami L-rtu stud for ~copyranosidc, ~mramwnnoside md L-rbamnopyrnnoskk. rcapcctively. 

T&k 3. “C chemical shifta md rlvcorWioo shifts of ulwoac q oictica (2) 

b&c (qlJ b&q& bb-C (%-C) ~‘&$~I$ 

a-D-glc Sd 23.1 (-3.5) &o-glc Rd 23.3 (-3.3) 

s a-D-ran S 23.0 (-3.6) W-am R 23.3 (-3.3) 

B-L-rh S 23.2 (-3.4) a-L-rtu R 23.1 (-3.5) 

a-D-glc S 21.7 (-3.9) 23.6 (-2.0) B-D-glc R 23.8 (-1.8) 22.0 (-3.6) 

2 a--n S 22.4 (-3.2) 23.5 (-2.1) 6-D-rmn R 23.7 (-1.9) 21.3 (-4.3) 

B-L-rh S 22.0 (-3.6) 23.9 (-1.7) a-L-rhr R 23.5 (-2.1) 21.5 (-4.1) 

a-D-glc S 32.5 (-4.2) F.3 (-2.4) B-D-glc R 34.5 (-2.2) 32.8 (-3.9) 

i a-D-Mn S 32.4 (-4.3) 34.2 (-2.5) 6-D-nm R 34.5 (-2.2) 32.7 (-4.0) 

8-L-rh S 32.8 (-3.9) 34.6 (-2.1) a-l-rho R 34.1 (-2.6) 32.2 (-4.5) 

a-D-glc s B-D-glc R 29.9 (-2.5) 34.8 (-4.4) 

1 a-D-nw S 28.3 (-4.1) 36.5 (-2.7) B-D-w R 29.9 (-2.5) 34.8 (-4.4) 

B-L-rho S 28.3 (-4.1) 36.5 (-2.7) a-L-rha R 29.7 (-2.7) 34.6 (-4.6) 

a-D-glc S 28.8 (-2.8) E-0-glc R 29.0 (-2.6) 

5 a-D-Nn S 28.7 (-2.9) B-Dun R 28.8 (-2.8) 

I%L-rh S 28.7 (-2.9) a-L-rhu R 28.6 (-3.0) 

b(pro-R-b-C) 

wg/ O< 
b'(pm-S-b-C) 

slalityofMomericcsrbonurfn?cfonIl. 
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atlOmcric series have a similar flora of the 
sugar residue re&kss of the structures of algycooe 
akohok. 

Glycosylation shifts of agiycone co&on sign& 
(Tables 2 and 3). Signals due to a carbinol carbon (ten- 
tatively abbreviated as O-C) are tumerahy deshklded by 
co. +7.0 ppm on #?-~nuumosylatkn or k_L-rhamnosyl- 
ation as in the case of p-@mosylation~ whereas it is 
sigo&ant that the magnitude of the downtkki shift of a-C 
resonances on a+lycosylxtion is somewhat smalkr than 
that on @giycoslylation, especiahy on a-~mannosylation 
and a-L-rhamrmsyktion; i.e. by co. + 5.2 ppm for methyl, 
primary and secondary (unhindered) akohols and by 
+6.7 - t 6.4 ppm for t-RuOH (6). In contrast to aliphatic 
akohok, the phenolic carbon signal is shielded on gly- 
cosylation,‘” i.e. C-l of 10 is shielded by -3.4 and 
- 2.5 ppm on a- and #3-L-rhamnosylation, respectively. 

In general, signals due to the vi&al carbons to UC 
(tentativety abbreviated as b-C) are shielded on 
#ucosyktioo and the absolute values of the up&id shifts 
of two equivaknt methyls or methyknes of secondary 
akohols, 3,4, and 7 are very d&rent from each other, 

ZCzn# 
on the stereocJmmical rektioo betweeo 0-C 

- ‘, -3 This novel effect was further substantiated in 
the present study of manrmsylation and rhamnosyktion 
shifts of 3, 4 and 7, being SW as fouows. on 
j3-5mannosylatkn and a-t.&amnosylatioo as well as 
@-u-ghtcosyktion (chirality of each C-l’ is R as a free 
form), pro&b-C is always more shielded than pro-it-b- 
C, Wbik 00 a-D-mmDO sylatkn ad j?-Miamoosylation 
as we0 as a-D-glucosylatioo (chirality of each C-l’ is s 
as a free form), proR-bC is more shielded than pro-!&b- 
C. 

Olycosylation shifts for datiady hindmd alcohol8 
(Tabk 4). As aheady qorted for ~-gluumides, the 
gkcosyktioo shifts for relatively hindered akohok such 
as (- )-!I, (+ b5, and 3/S, 6u- and 12/3rydroxy1 groups 
Of~~~~~S~~~rn~Of~ 
&OVC mentionad kss hi&red akohols owios to a 
change in the conformation of the glycoside-Wage.‘” 
The spectra of rMnamlosuks and L-rlmnooaidcs of ( - I- 
and ( t )-5 in tbc present study further revealed that this 
~huoctistic glycosyIatio0 shift evideotly depends upon 
the stereochemicai combination of C-l’ aod UC but is 
almost una&cta? by the con&m&ion ri C-2’ of the 
sugar residue. For /M+rnannoside, a-Auunnoside and 
$-t$coside of (+)a (chiral~ of C-3(a-c$Sf as well 

_ marums&, jMAmmnosrdc and a-n-glucoside of 
( - )-S (chirality of C-3(0x): R), signals due to both C-3 
and C-l’ are more deshklded than those of the cor- 
respondiag glyunidcs of the kss hindered akohols such 
as 4. To the contrary. signals of C-3 and C-l’ of B-B 
lMMoside, a-L-rbPmnosidc and @-DgIumide of ( - )-!? 
8s well as tbfm of u-Dmannosl ‘de, @Aaomoside and 
cr-~.&coside of (+ )-5 were found to be somewhat less 
deshkided than those of the correspondintt &oside of 
4 etc. it should be noted that this decmase of the 
ckwnfkld shii is more evident in the case of a-#y- 
co&k-series than the correspondiqg &aIuxnerk s&s. 

The mamtitt& of bC shielding by n-mannosylation 
aod t.Aanumsyktioo. depends on the stereochemical 
combination of UC and C-1’ as was also observed in the 
case of the Dglucosyktion reported previously.2J 

A similar gIycosylation shift was also observed in the 
spectra of a-LMnaMoS ‘de and u-L-rhpmnosidc of the 
3&OH group of the uiterpeoe (7). Further studies 00 the 
glycosylation shifts for more compkx hindered alcohols 
are under progress. 



“C NMR rtudy of a- and 8.anoneric & of ~mannopyMoridn aad L--rhmnopynaot~s 

TabkIMokduroUi~~di&rcoca~M~inM~~ 

a-D-qlc a-D-man a-L-rhr 

[Ml; Cwg n, IU,’ [U$ n, Ml,’ cn3p MD 

1 +324* +100* -147. 

ie +3349 t167' -140. 

; +260* 0. +268' t137' 0. t137. -153. 0. -153. 

j: t253' 0. t253. t132. 0' t132' -176' 0. -176' 

? +265* 0. t265' t141' 0' t141' -223' 0' -223' 

6, t301. 0. +3Olo t161' 0. t161" -131' 0. -131. 

te t3750 t79' t296' -205. t79* -284. 

M-5: +194* -70. t272. - 050 -70. - 7. -375. -70. -297' 

(*I-5 t536' t70. t450. t310. t70. t240. - 100 t70. - 00. 

0-D-glc B-D-man 0-L-rh8 

[HI; [lrl;' nD [HI,' [HIi' MD [HI; [nlbq nD 

! - 60' -127' t105. 

le - 60. -146' +102* 

ii - 01' Do - 01' -112. 0. -112. t103. 0' +103* 

s - 71. Do - 71. -151' 0. -151. t176' 0' t176' 

4 - 41. Do - 41. -129' 0' -129' t173' 0. t173. 

6, - 34. 0. - 34. - 79. 00 - 79. t131. Do t131' 

7c . 56. t7gw -135. . 65. t79' -144. t301' t79' t3D2* 

(-I-_ -2279 -70. -149. -332. -70' -254. - 49* -70' t 29' 

(*I-S +111* l 70* t 330 t 779 t70* - 1. t300. t70' t23D' 

‘Maaural io C&N. 
‘Mokcular rotah of glyco¶ide. 
wokcuhr rotation of aglycoae. 

LMeminution of anomaic con&mtbn of man- 

no&?3 anfi lhInosidu. In the structure studks~ of 
mannosides and rhamWsii both of which have an 
axial T-OH group in their stable conformation, the coup- 
ting conatallt of the aool%ric proton signal (‘J”,._,,, is 
of no use for dcterminrtion of their anomcric contlyn- 
tian, since anomerk proton signals of both a&s 
pncr8Dy appear as a slightly koadencd singkt. Instead, 
the c-n baa been currently assigned by means 
of comparison of UN? mokcular rotation di&!Wce, 
Md= WI u#YMdu- bwrnN3 with that of k 
comapoading methyl glyaide.” Having the anomcric 
pairsof~andLAamnosides,thcmokcular 
rotation of each glycoside was &terminal aad compared 
as shown in Tabk 5. The Mg, values of r~~~~~osi&s 
and L-rhamnoaides of (-) and (+ l-5, the glycosylation 
shifts of which arc evidently anomalous, were found to 
be very far from the expected values. It should be noted 
that MD of a-KMnannoside of (-j-S may kad to the 
erroneou8 aSignment of ita anomcrk corn, if 
the MD value of it.8 anomaic counterpart is unknown! 

Ithasbecnreportcdthatthcdircctbo&dC-Hcoup- 
ling constant of C-l’ si@x (‘Jc,cHv) of hexopyranoscs 
and pentop- arc chxractcrixtic of the anomeric 
con@aGon; ‘Jc~e~r~ is consistently cu. IOHx smaller 
wlnm H-l’ is axial than when it is equatorial.” In ako- 
holic and phenolic IMWMBS~~~~ and L-rhamnosides. 
‘Jc,S-w,e was found to depend mainly upon the anomcric 
structure rcgudkss of variety of aglyconea. This was 
promising for the dctcrmi&on of the UIomeric 
con@Wionwiththcaidofcbemicalshiftdi&rcnccsof 
C-3’ and C-5’ as well as the conrideration of the giy- 
cosylatioa shift.8 mentioned above. 

Fdy, it was demonstrated that the -m&c &ton 
SignSIs Of a-D mannoaides and a+rhamnosides appear 

T&k 6. Ce const~ts: ‘Jc,.H, (Hz) 

I 
2, 
? 
i 

t-1-5 
(+I+ 

5 
7, 
f! 

19 

D-un 

a B 

166 1% 

166 155 

166 154 

164 155 

166 154 

164 154 

165 153 

166 156 

166 156 

L-d 

a B 

160 150 

166 152 

166 154 

160 154 

160 152 

166 154 

164 152 

167 150 

160 150 

1431 

atways at lower field (6 5.02-5.92) than those of the 
corresponding j%anomcrs (6 4.55A.93). This di5ercncc 
is also helpful in the diiercntiation of the anon&c 
stn~turc, though occasioarl deviation by the cw of 
agtyconestzuctures or of the condition of the mcasurc- 
mcnt 0unpcrature, concentration and avent) was 
ObliCNd. 

Ah~ents--The authors arc gntcful to Ik. K. Yamas- 
ski of this kbontory for hir helpful discussion and advice. 
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